Machine Learning Approaches to Macroeconomic Forecasting
نویسندگان
چکیده
منابع مشابه
Two Approaches to Macroeconomic Forecasting
F ollowing World War II, the quantity and quality of macroeconomic data expanded dramatically. The most important factor was the regular publication of the National Income and Product Accounts, which contained hundreds of consistently defined and measured statistics that summarized overall economic activity. As the data supply expanded, entrepreneurs realized that a market existed for applying ...
متن کاملMachine Learning Approaches to Energy Consumption Forecasting in Households
We consider the problem of power demand forecasting in residential micro-grids. Several approaches using ARMA models, support vector machines, and recurrent neural networks that perform one-step ahead predictions have been proposed in the literature. Here, we extend them to perform multi-step ahead forecasting and we compare their performance. Toward this end, we implement a parallel and effici...
متن کاملTime series forecasting of Bitcoin price based on ARIMA and machine learning approaches
Bitcoin as the current leader in cryptocurrencies is a new asset class receiving significant attention in the financial and investment community and presents an interesting time series prediction problem. In this paper, some forecasting models based on classical like ARIMA and machine learning approaches including Kriging, Artificial Neural Network (ANN), Bayesian method, Support Vector Machine...
متن کاملRevisiting useful approaches to data-rich macroeconomic forecasting
We compare a number of data-rich prediction methods that are widely used in macroeconomic forecasting with a lesser known alternative: partial least squares (PLS) regression. In this method, linear, orthogonal combinations of a large number of predictor variables are constructed such that the covariance between a target variable and these common components is maximized. We show theoretically th...
متن کاملApproaches to machine learning
The field of machine learning strives to develop methods and techniques to automate the acquisition of new information, new skills, and new ways of organizing existing information. In this article, we review the major approaches to machine learning in symbolic domains, covering the tasks of learning concepts from examples, learning search methods, conceptual clustering, and language acquisition...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Federal Reserve Bank of Kansas City Economic Review
سال: 2018
ISSN: 0161-2387
DOI: 10.18651/er/4q18smalterhall